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ABSTRACT
In scenarios with multiple input single output systems, the
stochastic constrained least mean-squares (LMS) algorithm
has been proven to be an effective approach. However, when
only two input channels are available, it is unclear whether
this approach still yields improvements. In this paper, we in-
vestigate the stableness and the robustness of the constrained
LMS algorithm on “Track 1” of “2nd CHiME Challenge” [1]
and show that it leads to small yet consistent improvements
on all signal-to-noise settings.

Index Terms— Stochastic constrained LMS algorithm,
automatic speech recognition, two input channels

1. INTRODUCTION

The stochastic constrained least mean-squares (LMS) algo-
rithm [2], also known as Frost’s Beamformer, has been proven
to be useful in multiple sensor scenarios (e.g. [3], [4]).

While designed for large quantities of sensors, the ques-
tion remains whether this approach is useful for a two channel
setting as well. In this paper, we employ the constrained LMS
algorithm as an automatic speech recognition (ASR) frontend
for the speech recognizer and test its performance on “Track
1” of the “2nd CHiME Speech Separation and Recognition
Challenge” [1]. The data is provided for two channels with
realistic living-room noise and artificially mixed in speech.
We show that constrained LMS leads to small yet consistent
improvements on all signal-to-noise (SNR) settings.

2. ALGORITHM

The Frost’s Beamformer [2] is a constrained LMS algorithm
that is able to adapt an array of sensor weights to respond to
a certain direction while attenuating noise from other direc-
tions. The algorithm requires only that the direction of arrival
and a frequency band of interest is specified a priori. The
algorithm is summarized as:

minWTR
xx

W subject to CTW = F ,

where W is the adaptive filter weight vector, R
xx

is the au-
tocorrelation matrix of the input vector, C is the constraint

matrix, and F is the J-dimensional vector of weights in the
look-direction equivalent tapped delay line.

The optimum filter weights W
opt

are then obtained by:

W
opt

= R�1
xx

C
⇥
CTR�1

xx

C
⇤�1 F .

The adaptive stochastic constrained LMS algorithm [2] is
given by:

W (0) = F
W (k + 1) = P [W (k)� µy(k)X(k)] + F ,

where the KJ ⇥KJ-dimensional matrix P is defined by:

P := I � C
�
CTC

��1
CT ,

and the KJ-dimensional vector F is defined by:

F := C
�
CTC

��1 F .

The positive scalar µ is the step-size parameter and thus a
trade-of between convergence time and misadjustment from
the optimum solution. The choice of µ and the convergence
behavior is discussed in [2]. A computable upper bound for µ
is given by:

µ <
2

3E [XT (k)X (k)]
.

3. EXPERIMENTAL SETUP

The number of sensors K is set to K = 2 and is determined
by the number of audio channels of the provided signals. We
did not account for the target speaker movements and hence,
the look-direction was set perpendicular to the line of sen-
sors towards the target speaker. To let the desired signals
pass from look-direction without distortion, the weights of
the look-direction-equivalent tapped delay line F are set for
odd numbers of J to

FT = [�(�(J � 1)/2), . . . , �(0), . . . , �((J � 1)/2)] ,

where �(n) is the discrete-time unit impulse function.
For a given �, the step-size parameter µ is set to

µ =
2�

3E [XT (k)X(k)]
.
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Table 1. Performance in terms of keyword accuracies [%] on development set (left) and test set (right). The results for
� = 4.9 · 10�3 are listed for comparison reasons only, since they do not reflect the optimal development setting.

method � -6 dB -3 dB 0 dB 3 dB 6 dB 9 dB -6 dB -3 dB 0 dB 3 dB 6 dB 9 dB
left — 50.17 56.08 64.67 73.75 77.33 80.92 48.17 57.93 67.17 73.33 78.50 82.58
right — 42.58 47.67 58.00 68.08 74.00 77.92 42.25 49.58 59.92 68.25 73.33 78.42
DS/BL — 49.67 57.92 67.83 73.67 80.75 82.67 49.33 58.67 67.50 75.08 78.83 82.92
s.c.LMS 5.6 · 10�3 50.67 59.58 67.42 75.00 82.00 82.83 50.00 60.25 68.67 75.67 80.17 82.92
s.c.LMS 4.9 · 10�3 50.08 59.08 68.08 74.17 80.92 83.50 50.75 60.17 68.75 76.83 80.00 83.00

4. EVALUATION

The provided waveforms were processed by the algorithm
and new models were trained using the processed waveforms.
The parameter J was empirically set to the value of 7 (out
of 3, 5, 7, 9, 11, and 13 tested), since it lead to consistent im-
provement for all SNR settings on the development corpus.

Figure 1 shows the mean improvement (calculated over
all SNRs) in the keyword accuracy compared to the baseline
(BL) configuration, based on the step size �. All presented
values of � improve the mean keyword accuracy of both de-
velopment and test set. For � = 5.6 · 10�3, there is a local
optimum for the development set which translates reasonably
on the test set (here, the optimum would be at � = 4.9·10�3).
Table 1 shows the results for the individual SNR settings. We
also provide the results for the single channel configurations
(left channel, right channel). The BL configuration, which
takes the sum (or more correctly the average) of the two in-
put channels, correponds to the delay-and-sum (DS) beam-
former in that special case. The target speaker is situated in
the line perpendicular to the microphone array axis, since we
do not account for target speaker movements, and the target
speaker signals are assumed to imping coherently (i.e. with-
out any delay, which otherwise has to be compensated by the
DS beamformer) on the microphones. The results of the DS
configuration are, as expected, an improvement compared to
the single channel configurations. The performance is fur-
thermore improved for every SNR condition of the test set by
Frost’s Beamformer, when compared to the DS/BL system.

5. CONCLUSION

In this paper, we applied the constrained LMS algorithm for
the extreme case of two input channels. On “Track 1” of “2nd
CHiME challenge”, we showed that the algorithm leads to
small yet consistent improvements compared to the BL con-
figuration. We therefore conclude that this algorithm serves as
a meaningful frontend addition when robustifying the ASR.
As future work, we plan to employ an additional source lo-
calization algorithm so that target speaker movements can be
incorporated into this workflow.
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Fig. 1. Mean keyword accuracy improvement, for J = 7 and
various � compared to the baseline configuration

6. REFERENCES

[1] Emmanuel Vincent, Jon Barker, Shinji Watanabe,
Jonathan Le Roux, Francesco Nesta, and Marco Matas-
soni, “The Second ‘CHiME’ Speech Separation and
Recognition Challenge: Datasets, Tasks and Baselines,”
in Proc. IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), Vancouver,
May 2013.

[2] Otis Lamond Frost, “An Algorithm for Linearly Con-
strained Adaptive Array Processing,” Proceedings of the
IEEE, vol. 60, no. 8, pp. 926–935, 1972.

[3] Yong Zhao, Wei Liu, and Richard J. Langley, “Adaptive
Wideband Beamforming with Response Variation Con-
straints,” Proc. of EUSIPCO 2010, pp. 2077–2081, 2010.

[4] Jacob Benesty, Jingdong Chen, Yiteng (Arden) Huang,
and Jacek Dmochowski, “On Microphone-Array Beam-
forming From a MIMO Acoustic Signal Processing Per-
spective,” IEEE Transactions on Audio, Speech and Lan-
guage Processing, vol. 15, no. 3, pp. 1053–1065, Mar.
2007.


	 Introduction
	 Algorithm
	 Experimental setup
	 Evaluation
	 Conclusion
	 References

